60 percent of cancer patients do not respond effectively to chemotherapy treatments

60 percent of cancer patients do not respond effectively to chemotherapy treatments
66 / 100

60% of cancer patients don’t react adequately to chemotherapy medicines

Scientists estimate that nearly 60 percent of all cancer patients do not respond effectively to chemotherapy treatments. Even worse – many of those same patients experience toxic and sometimes deadly side effects.
Now, a Purdue University scientist and entrepreneur working to use simple LED light to help determine if certain chemotherapy options will work for specific patients. The work is published in Scientific Reports. “We are using a technique very similar to Doppler radar used in the weather to advance personalized medicine,” said David Nolte, the Edward M. Purcell Distinguished Professor of Physics and Astronomy at Purdue’s College of Science. “We take the LED light and shine it on biopsies. We then apply chemotherapy to the biopsies and analyze how the light scatters off the tissues.”

Untitled design 80 1
Image Source: Digpu


Nolte, who also is a member of the Purdue University Center for Cancer Research, said the light scattering dynamics give scientists and doctors detailed information about the likelihood of a chemotherapy drug being effective for a patient. Nolte said they have results within 24 hours. This first trial looked at biodynamic imaging on human patients with ovarian cancer.
“We look for signs of apoptosis, or what we call the controlled death of cells,” Nolte said. “Apoptosis is the signal that indicates the effectiveness of the chemotherapy for this patient’s tissues and tumors. For some cancers, there are so many treatment options available that it’s like a doctor is trying to fit square pegs in circular holes until the desired outcome is found. We want to make this process better for patients.”
Nolte has worked with several groups within the Purdue entrepreneurial and commercialization ecosystem, including the Purdue Foundry, on business plan development and management searches. AniDyn, a medical technology startup, was spun out of Purdue by professors Nolte and John J. Turek. AniDyn is focused on the development and commercialization of live-tissue imaging platform technologies.
Nolte also works closely with the Purdue Research Foundation Office of Technology Commercialisation to patent and license his technologies.